笔下文学 www.bxwxx.com,程序员修真之路无错无删减全文免费阅读!
其异名相除,同名相益,正无入正之,负无入负之。”
在程理回答后,光字再次垂落“正确”二字,然后程理踏步走上了第20层。
“又有积三十九亿七千二百一十五万六百二十五步。问为方几何?”
这实际上就是一道开方术的问题,出自《九章算术》第四卷“少广”卷。
翻译成白话就是:面积为39亿7215万625的正方形长度是多少?
程理同样很容易的就给出答案。
“答曰:六万三千二十五步。”
“开方术曰:置积为实。借一算步之,超一等……”
在得到程理的回答后,光字同样又垂落下“正确”的答案。
在踏上20层的时候,程理心中也有一些感慨。
“九章算术无疑是我国古代数学史上的一个瑰宝,早早就有了负数、分数、开方术、无理数等概念。”
在进入21层后,他发现这一次的题目不是来自《九章算学》了。
而是来自《周髀算经》。
“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。问:若勾三股四,弦几何?”
程理对这道题目自然不会陌生。
《周髀算经》应该是世界上最早提出勾股定理的一部数学著作,也是华夏目前可查证的成书最早的一部著作。
所以,在心中稍微一计算后,程理就不假思索回道。
“勾三股四,则弦为五。”
“正确。”
程理再次踏上下一层。
接下来程理发现,问题开始五花八门起来了。
大部分是来自于算经十书:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《缉古算经》、《缀术》、《五曹算经》、《孙子算经》。
此外还有一些其他著作,比如刘徽的一些著作,割圆术、阳马术、海岛算经等相关问题。
甚至还有一些失传的著作。
比如祖冲之的《缀术》。
要不是现在的问题右下角都会有一些蝇头小字的备注出出处,程理还不知道这些自己没见过的题目竟然是出自《缀术》。
不过虽然没见过题目,但内容都还是程理所学过的,所以程理很容易就回答出了问题。
就这样一路在这个算学碑里往上走着,一层又一层的攀登着。
程理有一种错觉,总觉得自己这一路爬上来,是在经历整个中国古代数学的兴衰史。
不过,关于中国古代数学算经的内容,到第100层后,就戛然而止了。
从第90层-第100层的最后十道问题,是一些宋元数学的著作。
比如《数书九章》里提到过的“大衍总数术”,《四元玉鉴》中提到过的内插法、垛积术。
甚至还出现了宋元数学发展史上,很标志性的“天元术”和“四元术”。
这是中国古代数学发展史上,将代数符号化的一个重要重要尝试。
用天元术列方程的方法,和现代代数中的列方程方法已经十分类似。
然而《四元玉鉴》已经是宋元数学的绝唱,元末之后,中国传统数学发展几乎停滞,整个明清两代在数学水平上再无发展,甚至还在不停倒退。
而这段时期,却是西方近现代数学的萌芽和急速发展阶段。
东西方文明的发展交替,东方文明在近现代世界发展史中衰落的原因,从数学发展情况上就可以看出一些端倪。
所以,当程理踏进第101层,发现题目不再是一些中国古代数学算经的题目,而是自己更为熟悉的西方近现代数学时。
一股浓浓的悲哀,就浮现在了程理心头。
这意味着,连算学碑都认为,在元末之后,中国古代数学,没有任何值得录入的算经题目了。
其异名相除,同名相益,正无入正之,负无入负之。”
在程理回答后,光字再次垂落“正确”二字,然后程理踏步走上了第20层。
“又有积三十九亿七千二百一十五万六百二十五步。问为方几何?”
这实际上就是一道开方术的问题,出自《九章算术》第四卷“少广”卷。
翻译成白话就是:面积为39亿7215万625的正方形长度是多少?
程理同样很容易的就给出答案。
“答曰:六万三千二十五步。”
“开方术曰:置积为实。借一算步之,超一等……”
在得到程理的回答后,光字同样又垂落下“正确”的答案。
在踏上20层的时候,程理心中也有一些感慨。
“九章算术无疑是我国古代数学史上的一个瑰宝,早早就有了负数、分数、开方术、无理数等概念。”
在进入21层后,他发现这一次的题目不是来自《九章算学》了。
而是来自《周髀算经》。
“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。问:若勾三股四,弦几何?”
程理对这道题目自然不会陌生。
《周髀算经》应该是世界上最早提出勾股定理的一部数学著作,也是华夏目前可查证的成书最早的一部著作。
所以,在心中稍微一计算后,程理就不假思索回道。
“勾三股四,则弦为五。”
“正确。”
程理再次踏上下一层。
接下来程理发现,问题开始五花八门起来了。
大部分是来自于算经十书:《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《缉古算经》、《缀术》、《五曹算经》、《孙子算经》。
此外还有一些其他著作,比如刘徽的一些著作,割圆术、阳马术、海岛算经等相关问题。
甚至还有一些失传的著作。
比如祖冲之的《缀术》。
要不是现在的问题右下角都会有一些蝇头小字的备注出出处,程理还不知道这些自己没见过的题目竟然是出自《缀术》。
不过虽然没见过题目,但内容都还是程理所学过的,所以程理很容易就回答出了问题。
就这样一路在这个算学碑里往上走着,一层又一层的攀登着。
程理有一种错觉,总觉得自己这一路爬上来,是在经历整个中国古代数学的兴衰史。
不过,关于中国古代数学算经的内容,到第100层后,就戛然而止了。
从第90层-第100层的最后十道问题,是一些宋元数学的著作。
比如《数书九章》里提到过的“大衍总数术”,《四元玉鉴》中提到过的内插法、垛积术。
甚至还出现了宋元数学发展史上,很标志性的“天元术”和“四元术”。
这是中国古代数学发展史上,将代数符号化的一个重要重要尝试。
用天元术列方程的方法,和现代代数中的列方程方法已经十分类似。
然而《四元玉鉴》已经是宋元数学的绝唱,元末之后,中国传统数学发展几乎停滞,整个明清两代在数学水平上再无发展,甚至还在不停倒退。
而这段时期,却是西方近现代数学的萌芽和急速发展阶段。
东西方文明的发展交替,东方文明在近现代世界发展史中衰落的原因,从数学发展情况上就可以看出一些端倪。
所以,当程理踏进第101层,发现题目不再是一些中国古代数学算经的题目,而是自己更为熟悉的西方近现代数学时。
一股浓浓的悲哀,就浮现在了程理心头。
这意味着,连算学碑都认为,在元末之后,中国古代数学,没有任何值得录入的算经题目了。